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The classical lubrication-theory model of steady peristaltic transport of periodic 
sinusoidal waves in infinite-length tubes (Shapiro et al. 1969) is generalized to 
arbitrary wave shape and wavenumber in tubes of finite length. Whereas the classical 
model is steady in a frame of reference moving with the peristaltic waves, peristaltic 
transport in a finite-length tube is inherently non-steady. It may be shown, however, 
that pumping performance is independent of tube length if there exists an integral 
number of peristaltic waves in the tube. Three particularly interesting characteristics 
of non-steady peristalsis are described : (i) fluctuations in pressure and shear stress 
arise due to a non-integral number of waves in the finitelength tube; (ii) retrograde 
motion of fluid particles during peristaltic transport (reflux) has inherently different 
behaviour with single peristaltic waves as compared to multiple ‘train waves ’, and 
(iii) finite tube length, the number of peristaltic waves and the degree of tube 
occlusion affect global pumping performance. We find that, whereas significant 
increases in pressure and shear stress result from the tube-to-wave length ratio being 
non-integral, global pumping performance is only slightly degraded by the existence 
of a non-integral number of waves in the tube during peristaltic transport. 
Furthermore, the extent of retrograde motion of fluid particles is much greater with 
single waves than with train waves. These results suggest that in the design and 
analysis of peristaltic pumps attention should be paid to the unsteady effects of finite 
tube length and to the differences between single and multiple peristaltic waves. 

1. Introduction 
Peristaltic pumping is the process of fluid transport arising from the progression 

of contraction waves along a distensible tube. I n  the human body peristalsis is the 
primary physiological mechanism used to move fluids from one place to another. 
Examples include the passage of urine from the kidneys to the bladder, the 
movement of chyme in the gastro-intestinal tract and the transport of a food bolus 
through the oesophagus. Peristalsis is the mechanism used in blood pumps and 
is commercially applied in the transport of materials which must be kept un- 
contaminated or which are corrosive and must be separated from the pump 
machinery. 

The earliest models of peristaltic pumping assumed trains of periodic sinusoidal 
waves in infinitely long two-dimensional channels or axisymmetric tubes (Shapiro 
1967; Fung & Yih 1968; Yih & Fung 1969; Shapiro, Jaffrin & Weinberg 1969). These 
models, which were applied primarily to characterize the basic fluid mechanics of the 
pumping process, fall into two classes : (i) the model developed by Fung & Yih which 
is restricted to small peristaltic wave amplitudes but has no restrictions on Reynolds 
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number; and (ii) the lubrication-theory model introduced by Shapiro et al. (1969) in 
which effects of fluid inertia and wall curvature are neglected but no restrictions are 
placed on wave amplitude (see the review paper by Jaffrin & Shapiro 1971). The 
lubrication-theory model is applicable globally in the limit of totally occluding 
peristaltic waves and is found to be a reasonably accurate approximation of global 
pumping characteristics a t  a small Reynolds number and wall curvature (Jaffrin 
1973; Takabatake & Ayukawa 1982; Takabatake, Ayukawa & Mori 1988). The 
accuracy of the model has been confirmed experimentally by Latham (1966) and 
Weinberg, Eckstein & Shapiro (1971). For many biological systems, particularly for 
peristaltic transport through the oesophagus and small bowels, the fluid bolus is 
sufficiently viscous, and the peristaltic wavelength sufficiently long, to justify 
application of the lubrication-theory approximations. 

The classical lubrication-theory model of peristaltic pumping has been extended 
by several authors to include effects of non-Newtonian fluids (Shukla et al. 1980; 
Shukla & Gupta 1982; Bohme & Friedrich 1983) and different cross-sectional shapes 
(Jaffrin & Meginniss 1971 ; Rath 1982). Studies of pressure within the ureter showed 
that the pressure signature within the fluid bolus near the contraction region is very 
sensitive to wall shape (Lykoudis & Roos 1970; Rrasseur & Dodds 1991). Roos & 
Lykoudis (1971) studied the effects of an inserted catheter on the fluid mechanics of 
urethral peristaltic transport. To explore the effects of a mucous layer in the 
gastrointestinal tracts, Brasseur, Corrsin & Lu (1987) studied the effects of a 
peripheral layer of different viscosity adjacent to the tube wall during peristalsis. 
Numerical calculations (Tong & Vawter 1972; Brown & Hung 1977; Stavitsky, 
Macagno & Christensen 1981 ; Takabatake & Ayukawa 1982 ; Takabatake et al. 1988; 
Dusey, Brasseur & Li 1990) which have appeared in the literature mainly as 
extensions to the two-dimensional wall models, have been used primarily to explore 
basic fluid mechanics issues rather than to describe a particular physiological flow. 

Much of the fundamental physics underlying peristaltic pumping has been 
explored using the models mentioned above. In particular, these models have 
quantified the global performance of peristaltic pumps and have uncovered the 
phenomena of fluid particle ‘reflux ’ and ‘trapping ’. However, these studies 
universally assumed an infinite train of peristaltic waves of prescribed shape 
travelling along an infinitely long tube. The more realistic, but inherently unsteady, 
model of a finite-length peristaltic pump has never been explored. In particular, 
the characteristics of single-wave peristaltic transport, as exists in oesophageal 
peristalsis, for example, or the effects of a non-integral number of waves in a finite 
tube, as is typical in commercial pumps, have not been studied. These issues underlie 
the present study. 

We generalize the classical lubrication-theory model of peristaltic transport to 
allow for arbitrary wave shape, arbitrary wavenumber and finite tube length, with 
two primary motivations in mind. The motivations of the current paper are basic 
fluid mechanical issues of the non-steady effects associated with finite tube lengths 
and the inherent difference between single and multiple wave transport. A second 
motivation, to be reported in another paper, is the application of the generalized 
model to the simulation and biological study of oesophageal bolus transport. 

Most of the previous studies of peristaltic pumping have concentrated on pumping 
performance as measured through global variables. In  the current discussions we 
focus on two important local variables, pressure and shear stress, in addition to 
volume flow rate and pressure difference between the end of the tube. The 
mathematical details of the model will be given in the next section. Section 3 
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discusses effects associated with a non-integral number of peristaltic waves in a 
finite-length tube. I n  particular, we concentrate on the effects of fluctuating pressure 
and shear stress, and degradation of pumping performance associated with non- 
integral numbers of peristaltic waves. In  $4, differences between single- and train- 
wave peristaltic transport are explored. We address, specifically, basic differences in 
particle reflux associated with single vs. multiple waves, and net reflux in comparison 
with the classical infinite-tube models. Conclusions follow in 55. 

2. The mathematical model 
In modelling the general case of non-periodic peristaltic transport in finite-length 

tubes, one must consider the inherently non-steady nature of the flow. Application 
of the lubrication-theory approximations to the non-steady problem requires that 
the flow dynamics be dominated by a single peristalsis-driven timescale and highly 
disparate single axial ‘us. radial lengthscales, and that the flow be driven by frictional 
forces. 

Consider the schematic illustrations of peristaltic transport in figure 1.  Figure 1 ( a )  
illustrates a single wave moving along a finite tube, whereas figure 1 ( b )  illustrates the 
continual production of multiple ‘train waves ’. We apply the lubrication-theory 
approximations to peristaltic transport driven by arbitrarily shaped deformations 
of the tube wall with pressure boundary conditions a t  the tube ends. Axisymmetric 
flow in a tube of circular cross-section is assumed with a single-phase Newtonian 
incompressible fluid of uniform viscosity p. The characteristic velocity of the 
peristaltic wave is c, the wavelength of the peristaltic wave is A, the tube is of length 
L and the minimum tube radius, or ‘tube occlusion’, is E .  The shape of the tube wall 
is given by H ( x ,  t ) .  In  the model, each material point on the wall moves only radially 
with velocity aH(x, t ) / a t .  (Longitudinal motions may be shown to be a second-order 
effect under conditions of small wall curvature (e.g. Taylor 1951)). Uniform 
pressures, p ,  and p,, are applied to the inlet and the outlet of the tube (x = O,L), 
respectively. The fluid volume within a single peristaltic wave, the ‘bolus’, is V,. The 
problem is formulated in the ‘laboratory frame’, whereby the observer is fixed 
relative to the tube ends as the peristaltic waves move past. 

Mathematically, the cases of single vs. multiple peristaltic waves (figure 1 a and 1 b )  
are handled in the same way. To apply lubrication theory to the general non-steady 
problem, the dominant axial scale h is assumed to be large relative to the dominant 
radial scale, a, where a is taken to be the average radius of the bolus, a = (VB/d) i .  
I n  peristaltically driven flows the appropriate timescale is the wave period, h/c. In 
the general non-steady case, A, a and c are average values over time. If the temporal 
variations are such that a, A, L,  h/c, and c are the only dominant space, time, and 
velocity scales, then the appropriate normalizations for viscous-dominated flows are 

.1: Ct” 8 P $a2 u=- v = -  I p -  A’ a A ’  C ’  k C ’  pcA ’ 
y = - ,  t = -  2 x = -  

where 8, and p are the axial and radial velocity components, and k is a wavenumber 
given by k = a/A. Correspondingly, the only appropriate Reynolds number is given 

Re = @ca/p) k .  

To simplify the problem, we introduce the lubrication theory approximations of 
infinitesimally small wall curvature ( k  + 0 )  and Reynolds number (Re + 0). The 
approximations assume that inertial effects are negligible and that the dominant 

bY 
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FIGURE 1. Sketch of peristaltic transport: (a )  illustrates a single contraction wave, whereas ( b )  
illustrates the continual production of ‘train waves ’. In  both cases, the fluid bolus is transported 
from left to right against a pressure difference p,-p, by peristaltic contraction waves along the 
tube. The contraction wave speed, wavelength, tube length and tube occlusion are defined 
respectively as c, A,  T, and E ,  The fluid viscosity and the fluid volume within one wavelength (the 
bolus) are p and V,. A non-integral number of peristaltic waves in the tube (L/A + integer) is 
illustrated in ( b ) .  

axial scale is much larger than the dominant radial scale. In this limit, pressure is 
uniform on each cross-section and the governing equations and boundary conditions 
become 

PI,=o =Po> PI,=, = PL, (3) 
where H = H / a  and L = z / A .  The lubrication-theory approximations lead to a local 
Poiseuille flow a t  every cross-section which communicates with its neighbouring 
sections through continuity. Uniform pressure must be specified a t  the two ends of 
the tube. The limits k + 0 and Re + 0 provide reasonably good global approximations 
even when the curvature and the Reynolds number are finite but small (Jaffrin 1973 ; 
Takabatake & Ayukawa 1982; Takabatake et al. 1988). 

The velocity field is obtained from (1)  : 

Evaluating (5) a t  the wall produces a relationship between the motion of the tube 
wall and the axial pressure gradient apJx  : 
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Integrating once yields 

where Go(t) ,  a t  most, depends on time. Integrating a second time yields a relationship 
between intraluminal pressure, wall geometry and wall velocity : 

Go(t )  is determined by evaluating (8) at x = L where p = p L :  

J0 t )  ds 

Here Ap = pL( t ) -po( t )  = Ap(t )  in general. Note from (7) and (8) that, as a 
consequence of the lubrication-theory approximations, temporal variations in 
pressure arise only through temporal variations at the inflow/outflow boundaries 
and temporal variations in wall velocity. Furthermore, pressure responds in- 
stantaneously to wall motions and the boundary conditions. 

Equations (4) and ( 5 )  for the velocity field, and (7)-(9) for the pressure and 
pressure gradient fields effectively complete the solution. In carrying out the 
numerical integrations of (7)-(9), some care must be taken. This is especially true for 
the integration 1 H (aH/at) dx where inaccurate evaluation can lead to large error in 
the pressure. 

The trajectories of fluid particles are obtained by carefully integrating particle 
velocity in time using second-order quadrature. Local wall shear stress is given by 

How one non-dimensionalizes volume flow rate, Q(z, t) ,  depends on the character- 
istics of the peristaltic pump. For a periodic train of peristaltic waves moving at a 
constant speed, it is useful to normalize the dimensional flow rate 

Q(d, 8 = 271: &di? 

with the flow rate of a completely occluded pump averaged over one wave period, 
71:a2h/PA, where PA =, A/c. For transport by a single peristaltic wave, on the other 
hand, we normalize Q(&, i) with the flow rate of a completely occluded pump averaged 
over the period during which the wave moves from the inlet through the outlet of the 
tube, xa2A/pL, where pL = L/c .  Consequently, the non-dimensional flow rate may be 
written 

where cQ = 1 for train waves and cQ = L / h  for single-wave transport. &(x, t )  is 
therefore given by 

(11) 

0 

&(x, t ,  = CQ &/(nCaa), 

CQ 3~ H4 
8 ax 

Urdr = --- . 
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Pumping performance is characterized by the relationship between a time- 
averaged volume flow rate, 

and the pressure difference between the ends of the tube, Ap, where Ap is fixed in time 
(see Shapiro et al. 1969). With periodic-train-wave peristaltic pumps, the average flow 
rate a is defined over a single wave period, T = I. In this case, the average volume 
flow rate is independent of to and x. With single-wave transport, however, the 
average is taken over the time that the wave travels the length of the tube, T = L/h,  
and &(x) depends on the position in the tube there the average is taken. The 
relationship between & and Ap is found by substituting (7) and (9) into ( 1  1 )  : 

where dt, 
H-4(s, t )  ds 

J o  

Go is the 'maximal' flow rate at x, the averaged flow rate when -p = 0. -po is the 
pressure difference required to maintain zero net flow rate a t  x (i.e. when &(x) = 0). 

Equations (4)-(14) provide the  variables of interest in the current study. It 
may be shown that these equations reduce to the forms given by Shapiro et aE. (1969) 
when the tube contains an integral number of periodic waves, that is when 
H ( x ,  t )  = H(x- t ) .  In what follows we analyse characteristics of finite-tube peristaltic 
pumps and single-wave peristaltic transport through parametric variation in L/A, 
non-dimensional pressure difference Ap, peristaltic wave shape, and the degree of 
tube occlusion defined by the non-dimensional minimum radius in the tube €/a .  
In comparing peristaltic pumps with different €/a ,  Ap,  or L/h, the volume within 
one peristaltic wave is held fixed. 

3. Effects of non-integral numbers of train waves 
The studies of Shapiro and his colleagues concentrated on the global performance 

of peristaltic pumps with periodic sinusoidal waves in infinitely long tubes. Shapiro 
et al. found that particles near the walls of the pump tend to travel against the 
direction of the peristaltic wave when the pump operates against a positive pressure 
head. 

In this section we consider the effect of finite tube length on transport 
characteristics. As pointed out in the previous section, pumping performance will 
only differ from the infinite-tube model if a non-integral number of peristaltic waves 
exists within the tube. In addition, we consider the effects of finite tube length on 
local variables, specifically pressure and wall shear stress. Pressure, in particular, is 
an important mechanical variable in biological systems such as the oesophagus, 
where intraluminal manometry is a common diagnostic tool used to evaluate the 
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contractile characteristics of the circular muscle within the oesophageal wall. The 
characteristics of pressure and shear stress fluctuations are also of interest in the 
design of commercial pumps where material fatigue is a concern. 

3.1. Pressure and shear stress Jluctuations 
Consider first an integral number of train waves propagating with constant speed 
through a tube of finite length with fixed equal pressure a t  the inlet and the outlet 
of the tube. I n  this section the shape of the tube is sinusoidal, described by 

(15) H ( x ,  t )  = € /a  + 0.5A [l - cos 2 n ( ~ -  t ) ] .  

Llh is varied by altering the length of the tube relative to the wave. When € / a  is 
varied, the wave amplitude A is adjusted to keep the volume of fluid within one wave 
fixed. Figure 2 shows pressure variations a t  six specially chosen times during one 
wave period with two waves existing in the tube (Llh = 2). In  this figure, the solid 
lines are the pressure distributions along the tube and the dashed lines are the 
corresponding wall shapes. I n  the calculation the initial location of the peristaltic 
wave is chosen with the point of minimum radius positioned a t  the inlet of the tube. 
All variables are non-dimensional as described in 5 2.1. 

Note from figure 2 that within each peristaltic wave there exist two peaks in the 
pressure distribution with a gradual pressure ramp in between. The transition from 
a large negative peak to a large positive peak takes place at the point of minimum 
radius (the point of maximal occlusion) within the contraction zones. To the right of 
this point the tube wall is moving radially inward (ClH/Clt < 0 ) ,  creating a large 
gradient in pressure there. In the oesophagus, for example, this radially inward 
motion of the tube wall is produced by the contraction of circular muscles within the 
oesophageal wall. To the left of the point of maximal occlusion the tube wall is 
moving radially outward leading to a corresponding drop in pressure there (there is 
no physiological counterpart to this outward motion?). 

Note that at the point of maximal occlusion the axial pressure gradient is positive 
and the local instantaneous flow is to the left. In  all other regions of the tube, 
however, the axially pressure gradient is negative and the local instantaneous flow 
is to the right - in the direction of the peristaltic wave. When averaged over one wave 
period, the net effect is transport in the direction of peristaltic wave motion. 

It is typical for highly occluded peristaltic pumps (in figure 2, € /a  = 0.018) to have 
large pressure gradients near the points of maximal occlusion, but a relatively small 
pressure gradient within the main body of the peristaltic wave. Less highly occluded 
pumps show a similar pressure distribution but with lower peak pressures, lower 
pressure gradients in the contraction zones, and a larger pressure gradient within the 
main body of the peristaltic wave relative to that within the contraction zone. 

As shown in figure 2, the existence of fixed pressure conditions at the ends of the 
finite-tube peristaltic pump leads to a global fluctuation in the pressure with a period 
equal to that of a single peristaltic wave. The pressure distribution oscillates as a 
whole to maintain fixed pressure at the tube ends. The oscillation is particularly 
rapid when a contraction zone passes into and out of the tube due to the large local 

t It is of' interest to note that nearly all analyses of peristaltic transport, including the current 
one, are based on a model in which the shape of the peristaltic wave is assumed. Physiologically, 
peristaltic contractions arise from active tensile forces originating within the tube wall. Not all 
peristaltic wave shapes are compatible with physiologically realizable contractile forces. The 
commonly assumed sin-wave shape, for example, is associated with active compression a t  the 
proximal end of the wave, but active extension at the distal end of the wave; active extension can 
not occur in the physiological system. This issue will be discussed in detail elsewhere. 
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FIGURE 2. Pressure distributions along the tube a t  six time instants in one wave period with two 
waves in the tube (L/h = 2 ) :  (a )  t = 0;  ( h )  0.02; (c) 0.04; (d )  0.49; ( e )  0.96; ( f )  0.98. The solid lines 
are pressure distributions along the tube, and the dashed lines are the corresponding sinusoidal wall 
shapes. The maximum and minimum pressures along the tube a t  each time instant are marked with 
p,,, and pmin, respectively. In  response to the tube occlusion point moving into or out of the tube, 
the pressure distribution curves shift up and down as a whole. In  the calculation, p ,  = p ,  = 0, 
E / U  = 0.018, A = 1.609. 

pressure variations in the region. Like the infinite-tube model, however, the relative 
difference in amplitude between the maximum pressure and minimum pressure, 
@ E p,,, --pmin, is invariant with time. 

Shown in figure 3 is the time-varying pressure distribution for a non-integral 
number of peristaltic waves in the tube where all variables are the same as in figure 
2 except for Llh. Note that the spatial and temporal pressure distributions in these 
two cases are very different. In both cases fixed pressures a t  the tube ends force the 
pressure within a wave to oscillate as a unit, and the most rapid pressure variations 
take place as the contraction zone moves into or out of the tube ends. When an 
integral number of waves occupies the tube the peristaltic waves enter and leave the 
tube ends simultaneously, so the pressure waveform oscillates as a whole with a 
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FIGURE 3. As figure 2 but with non-integral sinusoidal waves in the tube (L /h  = 1.82), and 
(a)  t = 0 ;  ( b )  0.02; (c) 0.44; (d) 0.80; ( e )  0.84; (f) 0.98. When the point of maximal tube occlusion 
moves into or out of the tube, the pressure waveforms oscillate rapidly. 

period equal to the period of a single wave. With a non-integral number of waves, the 
wave entering the tube is out of phase with the wave exiting the tube, leading to a 
shift in the waveforms between the two waves and rather dramatic oscillations in di. 
The most rapid oscillations in di occur when a contraction zone passes through the 
inlet, or the exit, of the tube. 

The most obvious difference between figures 2 and 3 is the variations of @ 
with time. @ fluctuates with time only when Llh is non-integral, as can be seen in 
figure 4 for the two cases of figures 2 and 3, and for four additional values of Llh 
(Llh = 1.0, 1.18, 1.82 in figure 4 a  and L / h  = 2.00,2.18, 2.82 in figure 4b). In all cases 
the only parameter varied is Llh. The fluctuations in @ are periodic with a period 
equal to the period of a single peristaltic wave. In  the figure, solid curves are for cases 
where the fractional values of Llh are greater than 0.5 and the dash-dot curves are 
for fractional values of L / h  are less than 0.5. di is constant and independent of Llh  
when L/A is an integer. When Llh is not integral, on the other hand, @ fluctuates 
with time above the value with an integral numbers of waves. 
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FIGURE 4. Temporal variations in pressure amplitude @ = pmax-pmin for different L/h.  The solid 
lines and dash-dot lines are for cases where the fractional values of L / h  are 0.82 and 0.18. 
respectively. Dotted lines are for integral tube-to-wave length. Note that @ is time independent 
when L/h  is an integer. In all calculations, p ,  = p,, € / a  = 0.018, A = 1.609. 
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Note that the fluctuation in @ when L/h  is non-integral always occurs with two 
larger and two smaller peaks. When the fractional part of L / h  is greater than 0.5 
the two smaller peaks surround the two larger peaks; the opposite is true when the 
fractional part of Llh is less than 0.5 (the pattern repeats after t = 1). The 
demarcation time separating the two small peaks from the two large peaks in @ 
always occurs a t  the beginninglend of each cycle, and a t  a time t ,  which is given by 
the fractional part o fLlh  (e.g. when Llh  = 1.18 t, = 0.18, whereas when L/h = 1.82 
t ,  = 0.82). This is because the fractional part of Llh  is equivalent to the non- 
dimensional time required for a most highly occluded point to reach the exit of the 
tube. 

Because the lubrication theory approximations lead to local Poiseuille flow, the 
local flow rate and the wall shear stress distribution are directly proportional to the 
local pressure gradient. Local pressure gradients in the finite-tube and infinite-tube 
models are equivalent when the tube is filled with an integral number of peristaltic 
waves. However, when Llh is non-integral, local pressure gradients may vary 
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FIGURE 5.  Wall shear stress distribution a t  three time instants: (a) t = 0 ;  (a) 0.02; (c) 0.84. The solid 
lines are shear stress distributions, and the dotted lines are the corresponding wall shapes. The 
minimum and maximum wall shear stress a t  each time instant are marked with T,," and T,,, which 
occurs at most highly occluded points. The shear stress distribution fluctuates as the peristaltic 
waves move into or out of the tube. I n  the calculations, p ,  =pol L/h  = 1.82, € / a  = 0.018, 
A = 1.609. 

significantly over a peristaltic wave cycle, leading to  fluctuations in wall shear stress 
not present in the integral wave case. 

Figure 5 shows the shear stress distribution along the wall when L/A = 1.82 at 
three different time instants. Comparing figure 5 ( a )  with the local pressure 
distribution in figure 3 (a ) ,  note that maximal positive wall shear stress 7,,, occurs 
a t  the points of maximum pressure gradient, the most highly occluded points along 
the tube. Smaller peaks occur on either side of T,,,, when the local pressure gradient, 
and consequently the local flow, has changed direction. These negative peaks, 
labelled on figure 5, are not as large in magnitude as 7,,,. Relative to the 
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FIGURE 6. Pressure - volume flow rate characteristics of train wave peristaltic transport with 
different tube relative occlusions E / U  and different tube-to-wave lengths L / h .  The volume flow rate 
averaged over one wave period is plotted against pressure difference Ap = p,-p,  in groups for 
different &/a, where L/h  is varied within each group from 1 to 4. In  each group of fixed &/a, the 
curves for integral Llh  overlap a t  the top of the group, whereas the curve for L / h  = 1.5 is always 
the lowest curve in the group. The effect of non-integral Llh is to reduce the level of pumping for 
given pressure head with L / h  = 1.5 having greatest effect. 

occluded zone which is a region of high shear stress, the central portion of a peristaltic 
wave is a region of relatively low shear stress. 

Note from figures 3 (a )  and 3 ( b )  that the local pressure gradient at  the most highly 
occluded point decreases slightly between t = 0 and 0.02. Consequently, the maximal 
shear stress also decreases, as shown in figures 5 ( a )  and 5 ( b ) .  Similarly, the local 
pressure gradient reaches a maximum a t  the most highly occluded points a t  t = 0.84 
(figure 3e) and t = 0.98 (figure 3 f ) .  At these times the local shear stress in these 
regions exceeds the maximum shear stress in the infinite-tube model (compare 
figures 5c  and 5a). 

3.2. Peristaltic pumping performance 

In the analysis of peristaltic transport as a mechanical pump, pumping performance 
is measured as the average pumping flow rate for given pressure head against which 
the pump operates. The relationship between the pressure difference Ap = p L - p ,  
and the flow rate averaged over one wave period, &, is linear in the infinite-tube 
lubrication-theory model (Shapiro et al. 1969), but non-linear when a Newtonian 
peripheral layer exists adjacent to the tube wall (Brasseur et al. 1987). In  the finite- 
tube homogeneous lubrication-theory model, the relationship between Ap and Q was 
shown to be linear in (12)-( 14). When an integral number of waves exists in the tube, 
the pumping performance is that of the infinite-tube model. Of interest here is the 
effect of non-integral Llh  on pumping performance. 

In  the infinite-tube model Q is invariant with the axial position where the time 
average is carried out. Equations (12)-(14) show that in the finite-tube model the 
average volume flow rate Q is, in general, dependent on axial position x. However, 
if the peristaltic waves are periodic in x ( H ( z ,  t )  = H ( s -  t ) )  the average volume flow 
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rate 0 may be shown to be independent of x regardless of Llh. This latter case is 
shown in figure 6, where Ap is plotted against Q for periodic train waves travelling 
along a tube of finite length. Within each group of curves € /a  is fixed and L/A is 
varied from L / h  = 1 to L/h = 4. Consistent with the usual definition of a mechanical 
pump, we consider only positive pressure heads (Ap > 0). Although the effect of 
non-integral L / h  is to reduce the level of pumping for given pressure head relative 
to integral L/h (or the infinite-tube model), the effect is, in general, not very large. 

4. Comparisons of single peristaltic waves with train waves 
In the human body, propagating contraction waves often transport single boluses 

of physiological fluid from one place to another. We explore here the basic fluid 
dynamics of single-wave peristaltic transport in tubes of finite length in comparison 
with transport via train waves. In particular, we analyse fluid particle reflux in single 
bolus transport in comparison with train waves and quantify the net loss of fluid 
through the inlet of the tube as a single bolus traverses the tube. We find that 
significantly greater fluid particle reflux occurs with single-wave peristaltic transport 
than train waves. 

4.1. Difference in pressure and $ow characteristics 
Before discussing the differences in reflux and pumping characteristics between 
single- and train-wave peristaltic transport, i t  is helpful to compare the spatial and 
temporal pressure variations in each case. This comparison is given in figure 7 where 
the spatial variations in pressure are plotted a t  fixed times for single bolus transport 
(a-c)  and train-wave transport with a non-integral number of waves in the tube (d-f) .  
In  both cases Ap = 0, the wave shapes are sinusoidal, and all other conditions are the 
same. The solid lines give the pressure distributions along the tube and the dashed 
lines show the corresponding wall shapes. 

In the single-wave case (a+), an extended adverse pressure gradient is created by 
the peristaltic wave from the inlet of the tube to the tail and the outlet of the tube 
to the head of the peristaltic wave. These extended regions of adverse pressure 
gradient, where the flow is opposite to that of the peristaltic wave, do not exist in the 
train-wave case. Consequently, during its transit to the outlet of the tube a single 
peristaltic wave is followed by an ever-increasing region of retrograde flow. A region 
of retrograde flow exists at  the outlet to the tube until the head of the peristaltic 
wave arrives at the outlet. 

Until the peristaltic wave passes through the outlet, the single-wave pump acts 
to transport fluid in the opposite direction to the motion of the peristaltic wave. 
However, as the bolus passes through the outlet of the tube, it carries fluid along with 
it. Ultimately, net transport is in the direction of the peristaltic wave. This dual 
transport characteristic of single-wave pumps is shown clearly in figure 8 where the 
local flow rates at  the outlet Q(L, t )  and the inlet Q(0, t ) ,  as well as their corresponding 
running time averages 

are plotted against time during the period that the peristaltic wave travels from the 
inlet through the outlet. Note that the local flow rate at  the outlet is retrograde to 
the bolus motion until the bolus passes through the outlet. Net forward transport 
results from the expulsion of the transported bolus fluid from the tube. Interestingly, 
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FIGURE 7. Comparison of spatial pressure variations between single peristaltic waves and train 
waves a t  three time instants over one wave period: (a-c) single wave transport, and (d-f) train 
wave transport; (a,  d) t = 0; (b ,  e )  0.44; (G,  f )  0.84. Solid lines are pressure distributions along the 
wall. The dashed lines show the corresponding wall shapes. The maximal and minimal pressures 
along the wall a t  each time instant are marked with p,,, and pmi,. In  the calculation, p ,  = p ,  = 0, 
L/A = 1.82, € / a  = 0.018, and A = 1.609. 

fluid continually leaves the tube inlet during single-bolus transport. This is not the 
case within train waves. 

4.2. Particle trajectory and re$ux 
'Reflux' here refers to the presence of fluid particles that move, on average, in a 
direction opposite to  that of the peristaltic wave?. The phenomenon was first 
elucidated by Shapiro et al. (1969) where it was found, in the infinite-tube model, that 
particle reflux occurs under conditions of partial occlusion and adverse net pressure 

t 'Particle' reflux is distinguished from pressure-driven reflux which occurs, for example, when 
the sphincter guarding the lower oesophagus opens abnormally allowing gastric fluid to  be forced 
into the lower oesophagus, and sometimes to the mouth. 



Non-steady peristaltic transport in Jinite-length tubes 143 

0 0.4 0.8 1.2 1.6 2.0 

t 
FIGURE 8. Volume flow rates a t  the tube inlet and outlet as a function of time. The local volume 
flow rates at the outlet and inlet, A(L, t )  and Q(0, t )  respectively, and their corresponding running 
averages, and Gin,&) are shown. I n  the calculation, Ap = 47.15, L/A = 1.82, e/u = 0.354, 
and A = 1.126. 

difference across one wavelength. Brasseur et al. (i987) found that the existence of 
a peripheral layer of fluid with different viscosity strongly influences the extent and 
degree of particle reflux. In these studies, however, only periodic train waves in 
infinitely long tubes were considered. In this section we study the effect of wave 
shape, non-integral numbers of peristaltic waves in the tube, and the differences 
between single- and train-wave peristaltic transport in the backward migration of 
fluid particles. 

The basic geometry of single- and train-wave peristaltic transport was illustrated 
in figure 1 .  To study the effects of wave shape we compare the sinusoidal wave shape 
of (15) and figure 2 with the ‘tear-drop’ shape shown in figure i, which is a more 
realistic model of bolus geometry in the oesophagus and other physiological systems. 
Particle trajectories of the following four cases are compared in figure 9 when an 
adverse pressure head is placed across the tube: (u)  a single sinusoidal peristaltic 
wave, (b )  train waves with a sinusoidal shape and ( c )  train waves with a tear-drop 
shape, where L/h  = 5 in all three cases; and ( d )  train waves with a sinusoidal shape 
but with a non-integral number of waves in the tube (Ljh = 4.76). All other 
conditions - fluid volume per wave, tube occlusion and length, wave speed, adverse 
pressure difference, fluid viscosity, and the initial positions of the fluid particles - are 
the same in the four calculations. The single-bolus case begins with the bolus 
centrally located in the tube. In  all cases the trajectories of eight fluid particles are 
calculated, where the particles are initially placed on both sides of the peristaltic 
wave at  the most highly occluded point, as shown in figure 9. The fluid particle 
trajectories are shown in figure 9 over three wave periods. Note that the radial scale 
has been highly stretched relative to the axial scale in these figures to better observe 
the radial motions of the fluid particles. 

Figure 9 ( b )  is the classical case of periodic sinusoidal wave contractions in an 
infinite tube with adverse pressure head. Note that, whereas most of the fluid 
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FIGURE 9. Trajectories of fluid particles for four different cases of peristaltic transport : (a )  a single 
sinusoidal wave @ / A  = 5); ( b )  train of sinusoidal waves with integral L / h  = 5;  (c)  train of tear- 
drop-shaped waves with integral L/A = 5; and (d) train of sinusoidal waves with non-integral 
L / h  = 4.76. In all calculations a non-dimensional adverse pressure difference of 18.85 was 
applied across the tube. Initially the fluid particles are located a t  z = 12.0 and 18.0 cm. 
€ / a  = 0.354 in all cases. 

particles move, on average, in the direction of the peristaltic wave, the fluid particles 
nearest to the wall of the tube migrate in the opposite direction. Shapiro et al. (1969) 
found that the thickness of the region near the wall in which reflux occurs, and the 
relative flow rate in the reflux region, are strongly dependent on the degree of 
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occlusion and the magnitude of the adverse pressure difference across the ends of the 
pump. Comparison between figures 9 (b )  and 9 (c) suggests that reflux is also strongly 
affected by the shape of the peristaltic wave. None of the fluid particles in figure 9 (c)  
migrate in a retrograde direction. On the other hand, comparison of figure 9 (b )  with 
9 ( d )  indicates that  only minimal differences exist between non-integral and integral 
numbers of peristaltic waves in the tube. 

The most interesting observation from figure 9 is in the comparison of particle 
motions between the single peristaltic wave of figure 9 ( a ) ,  and the train waves of 
figures 9 (b)  and 9 ( d ) .  Whereas in figures 9 ( b )  and 9 ( d )  only the fluid particles closest 
to the tube wall move in a direction opposite to the peristaltic wave, in the single 
bolus case all fluid particles initially in the occlusion zone ultimately move to 
positions to the left of their starting point during the time that the wave has 
travelled through the tube outlet. We find that, in general, significantly more fluid 
particle reflux occurs with single waves than with corresponding train-wave 
peristaltic transport during the same time period, and that the distance over which 
the refluxed particles migrate is much greater with single waves. 

The observations above are further quantified in figure 10 where the trajectories 
of 451 particles, initially distributed over 41 uniformly spaced cross-sectional areas 
within the tube, are shown. I n  each of these cross-sections 11 particles are evenly 
spaced from the wall to the tube centre at the initial time. In  the single-wave case, 
the peristaltic wave, initially located in the middle on the tube, passes the tube exit 
after three wave periods. The locations of each fluid particle relative to its starting 
point are recorded in all cases after three wave periods. Figure 10 shows the 
normalized distributions of relative particle motion for the four cases on figure 9. 

It is immediately apparent from figure 10 that single-wave peristaltic transport 
(figure 10a) leads to substantially greater reflux than train-wave peristaltic transport 
(figure l ob ) .  I n  fact, 77 YO of the fluid particles migrated to a position to the left of 
where they started (2, < 0) with single-wave transport, whereas only 26 YO migrated 
to  the left with periodic sinusoidal peristaltic waves over three wave periods. 
Consistent with the observations of figure 9, there is relatively little difference in 
the distributions of fluid particles between integral and non-integral numbers of 
peristaltic waves in the tube (compare figures l o b  and 1Od).  On the other hand, tear- 
drop-shaped peristaltic waves (figure 1Oc) are considerably more effective in resisting 
particle reflux and enhancing forward motion of fluid particles than sinusoidal 
peristaltic waves (figure l o b ) .  Only 2% of the 451 fluid particles moved in a 
retrograde direction with the tear-drop wave shape, as compared with 26% with 
sinusoidal peristaltic waves. 

It is interesting to note one fundamental difference between cases with integral 
and non-integral numbers of peristaltic waves. We observed in discussing figure 9 (b )  
that  particles near the wall tend to move against the peristaltic wave, whereas 
particles near the centre of the tube move with the peristaltic wave. Between these 
two regions lie fluid particles which do not move in either direction, but move around 
closed loops. For example, the particles indicated with the symbol 0 in figure 9 ( b )  
are following such closed paths. No closed paths exist, however, when a non-integral 
number of waves occupies the tube. This is because the flow is inherently non-steady 
when L / h  is non-integral in all frames of reference, and periodic fluid motions do not 
occur. Consequently, all fluid particles migrate either with or against the peristaltic 
wave. However, the global differences between integral and non-integral numbers of 
train waves are relatively minor, as observed by comparing figures 10 ( b )  and 10 ( d ) .  
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FIGURE 10. Distributions of the distance that fluid particles travel relative to their initial positions 
for the four cases of figure 9. The abscissa is the distance a particle has travelled, non- 
dimensionalized with the wavelength, after three wave periods. The distributions are normalized 
to unity. In all cases, a non-dimensional adverse pressure difference of 18.85 was applied across the 
tube ends, and the trajectories of 451 particles are calculated. At the initial time, the 451 particles 
are distributed at 41 uniformly spaced cross-sections, in each of which 11 particles are evenly 
placed from the wall to the centre of the tube. The hatched bars correspond to refluxed particles. 
Single-wave peristaltic transport leads to substantially greater reflux than train-wave peristaltic 
transport. E / U  = 0.354 in all cases. 

4.3. Net loss of reJuxed J u i d  from the tube inlet 
I n  the classical train-wave model, reflux can only occur with an adverse pressure 
difference across the tube. Consequently, net retrograde flow is caused by a pressure- 
driven component induced by the net increase in pressure along the peristaltic pump. 
We found in $4.1, however, that  fluid continually leaves the tube inlet during single- 
wave peristaltic transport. 

To quantify the net loss of fluid from the tube in single-bolus peristaltic transport, 
we average the volume flow rate at the inlet of the tube over the time that the 
peristaltic wave travels from the inlet to the outlet of the tube, as calculated from 
(12)-(14). I n  figure 11 the average flow rate leaving the inlet, &let < 0, is plotted 
against a favourable pressure difference between the outlet and inlet of the tube. 
Groups of curves with fixed sla but different Llh  are given, showing that the 
influence of Llh on flow rate is much weaker than the influence of € / a .  A number of 
interesting observations can be made from figure 11. Net fluid reflux takes place in 
the presence of a favourable pressure gradient. Indeed, a favourable pressure 
gradient is required to prevent reflux from the inlet to the tube. This circumstance 
is very different from the classical train-wave model where no reflux occurs unless an 
adverse pressure difference exists across the tube ends. Note from figure 11 that  loss 
of fluid from the inlet of the pump cannot be prevented when Ap = 0. 
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FIGURE 11. Pressure-volume flow rate characteristics of single-wave peristaltic transport with 
diiferent relative tube occlusions €1. and different tube-to-wave lengths LIA. The average volume 
flow rate at the tube inlet Q,,,,, is plotted against pressure difference Ap = y L - p o  in groups for 
different cia, where Llh ig varied within each group from 3 to 2 in the direction indicated by the 
arrow. A negative value of volume flow rate &,, implies fluid reflux from the tube inlet. 

Note that, as the level of occlusion increases (decreasing € / a ) ,  the magnitude of the 
favourable pressure difference required to prevent reflux from occurring increases, 
although the amount of reflux a t  fixed Ap eventually becomes small for small enough 
€/a .  An interesting observation from figure 11 is that, for fixed negative (i.e. 
favourable) pressure difference Ap,  the level of refluxed fluid does not diminish 
monotonically with decreasing €/a. I n  figure 12 &inlet is plotted against € /a  for 
different fixed pressure difference Ap. Observe that, at fixed Ap, a critical occlusion 
exists at which the magnitude of refluxed fluid from the inlet to the tube is maximal. 
This critical occlusion shifts to smaller € / a  as the favourable pressure difference 
increases. Only as € / a  approaches 0 (complete occlusion) or 1 (no peristalsis) does 
reflux of fluid from the pump cease when Ap = 0. 

4.4. Pumping performance in single-wave peristaltic transport 
Figure 6 showed that, whereas non-integral numbers of train waves in the tube 
reducing pumping performance over integral numbers of waves, the effect is not 
great. The pumping performance of single-wave peristaltic transport is shown in 
figure 13, where Ap is plotted against Qoutlet in different groups of fixed - € / a ,  and L/A 
is varied between 2 and 3 within each group. Note that Qoutlet and Qinlet are averages 
over the period that the wave travels from the tube inlet to the tube outlet, and that 
during this period the fluid volume in the tube changes. 

Pumping performance with single waves is qualitatively similar to that with train 
waves, as seen by comparing figure 13 with figure 6. With single waves, however, the 
‘maximal’ flow rate Qo is slightly less than with train waves, whereas the pressure 
difference required to maintain zero net flow rate is significantly greater than with 
train-wave peristaltic transport. Note also that pumping performance continuously 
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FIGURE 12. Average volume flow rate at  the tube inlet Q,,,,, as a function of tube occlusion e/a for 
fixed favourable pressure difference Ap. A negative value of volume flow rate Qiinlet implies fluid 
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FIGURE 13. Pressurevolume flow rate characteristics of single wave peristaltic transport with 
different relative tube occlusions € /a  and different tube-to-wave lengths Llh. The average volume 
flow rate a t  the tube outlet &,,,,,, is plotted against pressure difference Ap = p , - p ,  in groups for 
different &/a,  where Llh is varied within each group from 3 to 2 in the direction indicated by the 
arrow. 
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increases with increasing L l h ;  this is not the case in the train-wave peristaltic 
transport. 

5. Discussion and conclusions 
Previous studies of peristaltic transport have universally considered periodic 

peristaltic waves in infinite tubes, ignoring the inherently non-steady effects 
associated with the finite-length tubes encountered in real peristaltic pumps and in 
physiological peristaltic flows. Physiologically, transport by a single bolus moving 
along a tube of finite length is of particular interest, as occurs in the oesophagus for 
example. In the oesophagus, intraluminal pressure data for clinical evaluation are 
collected at select points along the length of the lumen, sometimes concurrent with 
radiographic imaging. An issue of great physiological concern is the interpretation of 
the spatial-temporal variations in local stresses in terms of the motility and efficacy 
of the transport process (Brasseur & Dodds 1991). Past studies of peristaltic 
transport have concentrated, to a large extent, on global pumping characteristics of 
peristaltic pumps. In this study we focus on both local and global dynamics. 

Using the lubrication-theory approximations, we have studied in detail the soutces 
of non-steadiness in the internal fluid stresses induced by the finite length of the 
peristaltic pump, the effects of non-integral numbers of peristaltic waves within a 
tube with fixed pressure at  its ends, particle motion and fluid transport with single 
peristaltic waves, and global pumping performance. Unlike the infinite-tube model, 
fixed pressure at  the tube ends induces large global fluctuations in pressure as the 
peristaltic waves pass through the tube inlet or outlet. In addition to these global 
fluctuations, fluctuations in pressure arise also from the existence of non-integral 
numbers of peristaltic waves within the tube. These additional fluctuations arise 
from a phase mismatch between peristaltic waves entering the tube and waves 
leaving the tube. 

Similar statements may be made concerning shear stress variations within the 
peristaltic pump. Peristalsis produces very large shear stress, and very large 
gradients in shear stress in the zone of maximal occlusion. Indeed, the creation of 
large shear forces in the contraction zone is the dominant mechanism behind 
peristaltic transport. We have found that peak shear stress fluctuates with time, and 
attains larger values with non-integral numbers of peristaltic waves. Global pumping 
performance, on the other hand, is only slightly degraded by the existence of non- 
integral numbers of peristaltic waves in a finite-length tube. 

Of particular physiological interest are the characteristics of single-wave bolus 
transport, in comparison with train-wave peristaltic transport. A train of peristaltic 
waves, on average, transports fluid in the direction of peristalsis in the same way at 
all cross-sections within the tube. This is not the case with single-wave transport. In 
fact, retrograde fluid motion occurs everywhere within the tube except within the 
peristaltic wave itself. Consequently, fluid continuously leaves the tube inlet during 
single-wave bolus transport. Similarly, fluid continuously enters the tube at the tube 
outlet at all times except as the peristaltic wave leaves the tube carrying bolus fluid 
with it. When averaged over the transit time of the single wave, however, the net 
effect is transport of fluid from the tube outlet. 

Owing to strong retrograde motion proximal to the peristaltic wave, single-wave 
peristaltic transport is associated with much higher levels of fluid particle reflux than 
train-wave transport. We further show that the degree of fluid particle reflux is a 
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strong function of the shape of the peristaltic wave, but only slightly affected by the 
existence of non-integral numbers of train waves within the peristaltic pump. 

Pumping by a train of peristaltic waves requires the existence of an adverse 
pressure difference across the tube ends to create particle reflux. By contrast, single- 
wave pumps require a favourable pressure difference to prevent particle reflux 
through the tube inlet. Furthermore, when the single-wave pump is operating at  
given fixed pressure difference between the pump ends, a ‘critical’ tube occlusion 
exists a t  which retrograde flow of fluid from the inlet is maximal. Occlusions larger 
or smaller than this critical value reduce the average rate of flow from the tube inlet. 
Similar t o  train-wave pumps, pumping performance with single-wave transport is 
not strongly affected by different L/h. On the other hand, train waves will be more 
effective a t  continuous fluid pumping than widely spaced single peristaltic waves. 

In  summary, whereas global pumping performance is altered to a relatively minor 
extent when the finite length of the peristaltic pump is taken into account, local 
effects - temporal and spatial variations in pressure and shear stress, retrograde flow, 
and particle motions within the bolus fluid - are strongly affected by the finite extent 
of the tube, the existence of integral us. non-integral numbers of peristaltic waves 
within the tube, and the shape of the peristaltic wave. These local effects are of 
importance in the interpretation of manometric measurements of intraluminal 
pressure in physiological peristaltic flows, and should be taken into account in the 
design of commercial peristaltic pumps. 
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